
Keyframing
CS 448D: Character Animation

Prof. Vladlen Koltun
Stanford University

Keyframing in traditional animation

• Master animator draws key frames

• Apprentice fills in the in-between frames

Keyframing in computer animation

• Animator specifies object state for time , for all i

• State for intermediate frames is computed by
interpolation

• State can include:

• Position

• Orientation

• Material properties

• Many other things

ti

Key values

• Not all parameters are specified for all key frames

• A key frame is only “key” for a subset of parameters

How do we interpolate?

• Depends on type of parameter

• This lecture: Position

• Orientation has issues, will be covered later

Polynomial interpolation

Theorem: Any (n+1) distinct points can be interpolated by
a polynomial of degree n.

Given

there is a polynomial

such that

(x0, y0), (x2, y2), . . . , (xn, yn)

p(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an

p(xi) = yi

Polynomial interpolation

y0 = a0x0
n + a1x0

n−1 + a2x0
n−2 + . . . + an

y1 = a0x1
n + a1x1

n−1 + a2x1
n−2 + . . . + an

...
...

yn = a0xn
n + a1xn

n−1 + a2xn
n−2 + . . . + an

Polynomial interpolation

Linear system. Solve (Gaussian elimination, LU decomposition).
Gives the desired polynomial.





x0
n x0

n−1 . . . 1
x1

n x1
n−1 . . . 1

...
... . . .

...
xn

n xn
n−1 . . . 1









a0

a1
...

an




=





y0

y1
...

yn





p(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an

Polynomial interpolation

• What happens in three dimensions?

• Express

as

• Compute the polynomials x(t), y(t), and z(t)

• In dealing with position interpolation, we will sometimes
discuss only the univariate case, knowing that all methods
generalize to interpolating position in higher dimensions.

(x(t1), y(t1), z(t1)), . . . , (x(tn), y(tn), z(tn))

(x1, y1, z1), . . . , (xn, yn, zn)

Lagrange interpolation

• Need to interpolate

• Express p(x) as a linear combination of (n+1) basis
polynomials , such that and
for all

• If we can find such , we can set

• Set

Li Li(xi) = 1 Li(xj) = 0
j != i

Li

(x0, y0), (x2, y2), . . . , (xn, yn)

Li(x) =
∏

0≤j≤n, j "=i

x− xj

xi − xj

p(x) =
n∑

i=0

yiLi(x)

Global versus local interpolation

• These were global interpolation methods

• Computationally expensive. Potentially unstable
numerically. A local change of an input point triggers a
complete re-computation.

• Unweildy for animators, who want to be able to make
local manipulations.

• Local interpolation methods connect input points with
polynomial arcs

Linear interpolation

Interpolate between and with

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x0, y0)

pi(x) = yi +
x− xi

xi+1 − xi
(yi+1 − yi)

(xi, yi) (xi+1, yi+1)

Orders of continuity

• continuity: The n-th derivative is continuous.

• Linear interpolation provides continuity. Continuous
but potentially jerky motion.

• Want to achieve at least , and sometimes continuity.

C0

Cn

C1 C2

Hermite interpolation

• How do we achieve continuity and local control?

• We enforce shared tangents at control points and connect
consecutive input points with polynomial arcs subject to
the positional and tangential constraints at the endpoints.

C1

Hermite interpolation

Four linear equations that constrain the coefficients of p.
How many coefficients do we need? Four. What is the
degree of p? It’s a cubic.

p(t) = a0t
3 + a1t

2 + a2t + a3

p′(t) = 3a0t
2 + 2a1t + a2

p(0)

p′(0)

p′(1)

p(1)

p(t)

Hermite interpolation

Solve to obtain the coefficients.

p(0)

p′(0)

p′(1)

p(1)

p(t)

a3 = p(0)
a2 = p′(0)

a0 + a1 + a2 + a3 = p(1)
3a0 + 2a1 + a2 = p′(1)

Hermite interpolation

p(t) =
(
t3 t2 t 1

)





2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0









p(0)
p(1)
p′(0)
p′(1)





p(t) =
(
3t2 2t 1 0

)





2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0









p(0)
p(1)
p′(0)
p′(1)





Hermite interpolation

T =
(
t3 t2 t 1

)

M =





2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0





p(t) = a0t
3 + a1t

2 + a2t + a3

p(t) = T TMB

B =





p(0)
p(1)
p′(0)
p′(1)





Catmull-Rom spline
• How do we get the tangents? Can be specified by the

animator along with the control points, but this can be
tedious and time-consuming.

• The Catmull-Rom idea:

p′(ti) =
1
2

(
p(ti+1)− p(ti−1)

)

p(ti−1)

p(ti) p′(ti)

p(ti+1)

Bezier interpolation

With two control points it’s equivalent to Hermite interpolation.

x1

x0

x2x3

p(t) = T TMB T =
(
t3 t2 t 1

)

M =





−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



 B =





x0

x1

x2

x3





Diversion: Bezier curves

A Bezier curve can have any number of control points.

x1

x0

x2

x3

x4

Bernstein polynomials:

© 1999-2009 Wolfram Research, Inc.

p(t) =
n∑

i=0

(
n

i

)
(1− t)n−itixi

Kochanek-Bartels spline
• Hermite lets us specify the tangents directly.

• Catmull-Rom completely automates the shape of the
spline at the input points.

• Can we have some degree of control over the spline, but
in a more intuitive way than direct tangent specification?

• Yes. Kochanek-Bartels gives us three intuitive degrees of
freedom for the tangents: tension, continuity, and bias.

tension continuity bias

Kochanek-Bartels spline

Tension

p′
left(ti) =

1− T

2

(
p(ti)− p(ti−1)

)
+

1− T

2

(
p(ti+1)− p(ti)

)

p′
right(ti) =

1− T

2

(
p(ti)− p(ti−1)

)
+

1− T

2

(
p(ti+1)− p(ti)

)

Kochanek-Bartels spline

Continuity

p′
left(ti) =

1− C

2

(
p(ti)− p(ti−1)

)
+

1 + C

2

(
p(ti+1)− p(ti)

)

p′
right(ti) =

1 + C

2

(
p(ti)− p(ti−1)

)
+

1− C

2

(
p(ti+1)− p(ti)

)

Kochanek-Bartels spline

Bias

p′
left(ti) =

1 + B

2

(
p(ti)− p(ti−1)

)
+

1−B

2

(
p(ti+1)− p(ti)

)

p′
right(ti) =

1 + B

2

(
p(ti)− p(ti−1)

)
+

1−B

2

(
p(ti+1)− p(ti)

)

Kochanek-Bartels spline

p′
left(ti) = (1−T)(1−C)(1+B)

2

(
p(ti)− p(ti−1)

)
+ (1−T)(1+C)(1−B)

2

(
p(ti+1)− p(ti)

)

p′
right(ti) = (1−T)(1+C)(1+B)

2

(
p(ti)− p(ti−1)

)
+ (1−T)(1−C)(1−B)

2

(
p(ti+1)− p(ti)

)

Velocity Control

• We now have a parametric curve p(t) that smoothly
interpolates keys. But we still have a problem: uncontrolled
velocity of movement.

Reparameterization

• We want to be able to control the distance covered along
the curve per unit of time. Need a function T that maps
from normalized distance covered, s, to appropriate
parameter value, t. Then p(T(s)) will move at uniform
velocity.

• We approximate T by approximating its inverse S that
maps from parameter values, t, to distance covered, s.

Finite differencing

• Sample t uniformly and approximate p(t) by piecewise
linear segments. Approximate S by normalized distance
covered along the approximating curve.

Adaptive finite differencing
Maintain a set of candidate curve segments. For each such
segment (p(a),p(b)), if

then replace with and

and iterate until no segments need to be broken up.

∣∣∣∣

∥∥∥∥
p(a) + p(b)

2
− p(a)

∥∥∥∥ +
∥∥∥∥p(b)− p(a) + p(b)

2

∥∥∥∥− ‖p(b)− p(a)‖
∣∣∣∣ > ε

(
p(a),

p(a) + p(b)
2

) (
p(a) + p(b)

2
,p(b)

)
(p(a),p(b))

Velocity control

We can now produce uniform velocity motion along the curve
by approximating , computing the resulting ,
and moving along as s increases uniformly from 0 to 1.

T (s) = S−1(t)S(t)
p(T (s))

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1s

time

Velocity control
We can also drive the motion along the curve in more general
ways, with the distance covered being a non-uniform function
 of time. Then the motion can be expressed as .
One example is the ease-in/ease-out behavior:
σ(τ) p(T (σ(τ)))

τ

σ(τ)

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

σ(τ) =
sin

(
τπ − π

2

)
+ 1

2

