
Keyframing
CS 448D: Character Animation

Prof. Vladlen Koltun
Stanford University



Keyframing in traditional animation

• Master animator draws key frames

• Apprentice fills in the in-between frames



Keyframing in computer animation

• Animator specifies object state for time    , for all i

• State for intermediate frames is computed by 
interpolation

• State can include:

• Position

• Orientation

• Material properties

• Many other things

ti



Key values

• Not all parameters are specified for all key frames

• A key frame is only “key” for a subset of parameters



How do we interpolate?

• Depends on type of parameter

• This lecture: Position

• Orientation has issues, will be covered later



Polynomial interpolation

Theorem: Any (n+1) distinct points can be interpolated by 
a polynomial of degree n.

Given 

there is a polynomial

such that 

(x0, y0), (x2, y2), . . . , (xn, yn)

p(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an

p(xi) = yi



Polynomial interpolation

y0 = a0x0
n + a1x0

n−1 + a2x0
n−2 + . . . + an

y1 = a0x1
n + a1x1

n−1 + a2x1
n−2 + . . . + an

...
...

yn = a0xn
n + a1xn

n−1 + a2xn
n−2 + . . . + an



Polynomial interpolation

Linear system. Solve (Gaussian elimination, LU decomposition). 
Gives the desired polynomial.





x0
n x0

n−1 . . . 1
x1

n x1
n−1 . . . 1

...
... . . .

...
xn

n xn
n−1 . . . 1









a0

a1
...

an




=





y0

y1
...

yn





p(x) = a0x
n + a1x

n−1 + a2x
n−2 + . . . + an



Polynomial interpolation

• What happens in three dimensions?

• Express

as

• Compute the polynomials x(t), y(t), and z(t)

• In dealing with position interpolation, we will sometimes 
discuss only the univariate case, knowing that all methods 
generalize to interpolating position in higher dimensions.

(x(t1), y(t1), z(t1)), . . . , (x(tn), y(tn), z(tn))

(x1, y1, z1), . . . , (xn, yn, zn)



Lagrange interpolation

• Need to interpolate

• Express p(x) as a linear combination of (n+1) basis 
polynomials      , such that                   and                     
for all 

• If we can find such      , we can set

• Set 

Li Li(xi) = 1 Li(xj) = 0
j != i

Li

(x0, y0), (x2, y2), . . . , (xn, yn)

Li(x) =
∏

0≤j≤n, j "=i

x− xj

xi − xj

p(x) =
n∑

i=0

yiLi(x)



Global versus local interpolation

• These were global interpolation methods

• Computationally expensive. Potentially unstable 
numerically. A local change of an input point triggers a 
complete re-computation.

• Unweildy for animators, who want to be able to make 
local manipulations.

• Local interpolation methods connect input points with 
polynomial arcs



Linear interpolation

Interpolate between             and                    with

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

(x5, y5)

(x0, y0)

pi(x) = yi +
x− xi

xi+1 − xi
(yi+1 − yi)

(xi, yi) (xi+1, yi+1)



Orders of continuity

•      continuity:  The n-th derivative is continuous.

• Linear interpolation provides      continuity. Continuous 
but potentially jerky motion.

• Want to achieve at least     , and sometimes      continuity.

C0

Cn

C1 C2



Hermite interpolation

• How do we achieve      continuity and local control?

• We enforce shared tangents at control points and connect 
consecutive input points with polynomial arcs subject to 
the positional and tangential constraints at the endpoints.

C1



Hermite interpolation

Four linear equations that constrain the coefficients of p. 
How many coefficients do we need? Four. What is the 
degree of p? It’s a cubic.

p(t) = a0t
3 + a1t

2 + a2t + a3

p′(t) = 3a0t
2 + 2a1t + a2

p(0)

p′(0)

p′(1)

p(1)

p(t)



Hermite interpolation

Solve to obtain the coefficients.

p(0)

p′(0)

p′(1)

p(1)

p(t)

a3 = p(0)
a2 = p′(0)

a0 + a1 + a2 + a3 = p(1)
3a0 + 2a1 + a2 = p′(1)



Hermite interpolation

p(t) =
(
t3 t2 t 1

)





2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0









p(0)
p(1)
p′(0)
p′(1)





p(t) =
(
3t2 2t 1 0

)





2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0









p(0)
p(1)
p′(0)
p′(1)







Hermite interpolation

T =
(
t3 t2 t 1

)

M =





2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0





p(t) = a0t
3 + a1t

2 + a2t + a3

p(t) = T TMB

B =





p(0)
p(1)
p′(0)
p′(1)







Catmull-Rom spline
• How do we get the tangents? Can be specified by the 

animator along with the control points, but this can be 
tedious and time-consuming.

• The Catmull-Rom idea: 

p′(ti) =
1
2

(
p(ti+1)− p(ti−1)

)

p(ti−1)

p(ti) p′(ti)

p(ti+1)



Bezier interpolation

With two control points it’s equivalent to Hermite interpolation.

x1

x0

x2x3

p(t) = T TMB T =
(
t3 t2 t 1

)

M =





−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0



 B =





x0

x1

x2

x3







Diversion: Bezier curves

A Bezier curve can have any number of control points.

x1

x0

x2

x3

x4

Bernstein polynomials:
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p(t) =
n∑

i=0

(
n

i

)
(1− t)n−itixi



Kochanek-Bartels spline
• Hermite lets us specify the tangents directly.

• Catmull-Rom completely automates the shape of the 
spline at the input points.

• Can we have some degree of control over the spline, but 
in a more intuitive way than direct tangent specification?

• Yes. Kochanek-Bartels gives us three intuitive degrees of 
freedom for the tangents: tension, continuity, and bias.

tension continuity bias



Kochanek-Bartels spline

Tension

p′
left(ti) =

1− T

2

(
p(ti)− p(ti−1)

)
+

1− T

2

(
p(ti+1)− p(ti)

)

p′
right(ti) =

1− T

2

(
p(ti)− p(ti−1)

)
+

1− T

2

(
p(ti+1)− p(ti)

)



Kochanek-Bartels spline

Continuity

p′
left(ti) =

1− C

2

(
p(ti)− p(ti−1)

)
+

1 + C

2

(
p(ti+1)− p(ti)

)

p′
right(ti) =

1 + C

2

(
p(ti)− p(ti−1)

)
+

1− C

2

(
p(ti+1)− p(ti)

)



Kochanek-Bartels spline

Bias

p′
left(ti) =

1 + B

2

(
p(ti)− p(ti−1)

)
+

1−B

2

(
p(ti+1)− p(ti)

)

p′
right(ti) =

1 + B

2

(
p(ti)− p(ti−1)

)
+

1−B

2

(
p(ti+1)− p(ti)

)



Kochanek-Bartels spline

p′
left(ti) = (1−T )(1−C)(1+B)

2

(
p(ti)− p(ti−1)

)
+ (1−T )(1+C)(1−B)

2

(
p(ti+1)− p(ti)

)

p′
right(ti) = (1−T )(1+C)(1+B)

2

(
p(ti)− p(ti−1)

)
+ (1−T )(1−C)(1−B)

2

(
p(ti+1)− p(ti)

)



Velocity Control

• We now have a parametric curve p(t) that smoothly 
interpolates keys. But we still have a problem: uncontrolled 
velocity of movement.



Reparameterization

• We want to be able to control the distance covered along 
the curve per unit of time. Need a function T that maps 
from normalized distance covered, s, to appropriate 
parameter value, t. Then p(T(s)) will move at uniform 
velocity.

• We approximate T by approximating its inverse S that 
maps from parameter values, t, to distance covered, s.



Finite differencing

• Sample t uniformly and approximate p(t) by piecewise 
linear segments. Approximate S by normalized distance 
covered along the approximating curve.



Adaptive finite differencing
Maintain a set of candidate curve segments. For each such 
segment (p(a),p(b)), if

then replace                with                    and 

and iterate until no segments need to be broken up.

∣∣∣∣

∥∥∥∥
p(a) + p(b)

2
− p(a)

∥∥∥∥ +
∥∥∥∥p(b)− p(a) + p(b)

2

∥∥∥∥− ‖p(b)− p(a)‖
∣∣∣∣ > ε

(
p(a),

p(a) + p(b)
2

) (
p(a) + p(b)

2
,p(b)

)
(p(a),p(b))



Velocity control

We can now produce uniform velocity motion along the curve 
by approximating       , computing the resulting                   , 
and moving along            as s increases uniformly from 0 to 1.

T (s) = S−1(t)S(t)
p(T (s))

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1s

time



Velocity control
We can also drive the motion along the curve in more general 
ways, with the distance covered being a non-uniform function    
        of time. Then the motion can be expressed as                  . 
One example is the ease-in/ease-out behavior:
σ(τ) p(T (σ(τ)))

τ

σ(τ)

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

σ(τ) =
sin

(
τπ − π

2

)
+ 1

2


